Author:
Xu Dong,Guthrie Jill R.,Mabry Sherry,Sack Thomas M.,Truog William E.
Abstract
Oxygen toxicity is one of the major risk factors in the development of the chronic lung disease or bronchopulmonary dysplasia in premature infants. Using proteomic analysis, we discovered that mitochondrial aldehyde dehydrogenase (mtALDH or ALDH2) was downregulated in neonatal rat lung after hyperoxic exposure. To study the role of mtALDH in hyperoxic lung injury, we overexpressed mtALDH in human lung epithelial cells (A549) and found that mtALDH significantly reduced hyperoxia-induced cell death. Compared with control cells (Neo-A549), the necrotic cell death in mtALDH-overexpressing cells (mtALDH-A549) decreased from 25.3 to 6.5%, 50.5 to 9.1%, and 52.4 to 15.1% after 24-, 48-, and 72-h hyperoxic exposure, respectively. The levels of intracellular and mitochondria-derived reactive oxygen species (ROS) in mtALDH-A549 cells after hyperoxic exposure were significantly lowered compared with Neo-A549 cells. mtALDH overexpression significantly stimulated extracellular signal-regulated kinase (ERK) phosphorylation under normoxic and hyperoxic conditions. Inhibition of ERK phosphorylation partially eliminated the protective effect of mtALDH in hyperoxia-induced cell death, suggesting ERK activation by mtALDH conferred cellular resistance to hyperoxia. mtALDH overexpression augmented Akt phosphorylation and maintained the total Akt level in mtALDH-A549 cells under normoxic and hyperoxic conditions. Inhibition of phosphatidylinositol 3-kinase (PI3K) activation by LY294002 in mtALDH-A549 cells significantly increased necrotic cell death after hyperoxic exposure, indicating that PI3K-Akt activation by mtALDH played an important role in cell survival after hyperoxia. Taken together, these data demonstrate that mtALDH overexpression attenuates hyperoxia-induced cell death in lung epithelial cells through reduction of ROS, activation of ERK/MAPK, and PI3K-Akt cell survival signaling pathways.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献