Affiliation:
1. Departments of 1Pediatrics and
2. Surgical and Radiological Sciences, University of California, Davis, California
3. Cardiovascular Research Institute, University of California, San Francisco;
4. Departments of 4Surgery and Pediatrics and
5. Medicine and Anesthesia, and
Abstract
Abnormalities of the lymphatic circulation are well recognized in patients with congenital heart defects. However, it is not known how the associated abnormal blood flow patterns, such as increased pulmonary blood flow (PBF), might affect pulmonary lymphatic function and structure. Using well-established ovine models of acute and chronic increases in PBF, we cannulated the efferent lymphatic duct of the caudal mediastinal node and collected and analyzed lymph effluent from the lungs of lambs with acutely increased PBF ( n = 6), chronically increased PBF ( n = 6), and age-matched normal lambs ( n = 8). When normalized to PBF, we found that lymph flow was unchanged following acute increases in PBF but decreased following chronic increases in PBF. The lymph:plasma protein ratio decreased with both acute and chronic increases in PBF. Lymph bioavailable nitric oxide increased following acute increases in PBF but decreased following chronic increases in PBF. In addition, we found perturbations in the transit kinetics of contrast material through the pleural lymphatics of lambs with chronic increases in PBF. Finally, there were structural changes in the pulmonary lymphatic system in lambs with chronic increases in PBF: lymphatics from these lambs were larger and more dilated, and there were alterations in the expression of vascular endothelial growth factor-C, lymphatic vessel endothelial hyaluronan receptor-1, and Angiopoietin-2, proteins known to be important for lymphatic growth, development, and remodeling. Taken together these data suggest that chronic increases in PBF lead to both functional and structural aberrations of lung lymphatics. These findings have important therapeutic implications that warrant further study.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献