Maintenance of lung myeloperoxidase activity in proestrus females after trauma-hemorrhage: upregulation of heme oxygenase-1

Author:

Yu Huang-Ping,Yang Shaolong,Hsieh Ya-Ching,Choudhry Mashkoor A.,Bland Kirby I.,Chaudry Irshad H.

Abstract

Previous studies showed that females in the proestrus stage of the reproductive cycle maintain organ functions after trauma-hemorrhage. However, it remains unknown whether the female reproductive cycle is an important variable in the regulation of lung injury after trauma-hemorrhage and, if so, whether the effect is mediated via upregulation of heme oxygenase (HO)-1. To examine this, female Sprague-Dawley rats during diestrus, proestrus, estrus, and metestrus phases of the reproductive cycle or 14 days after ovariectomy underwent soft tissue trauma and then hemorrhage (mean blood pressure 40 mmHg for 90 min followed by fluid resuscitation). At 2 h after trauma-hemorrhage or sham operation, lung myeloperoxidase (MPO) activity and intercellular adhesion molecule (ICAM)-1, cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-3, and HO-1 protein levels were measured. Plasma 17β-estradiol concentration was also determined. The results indicated that trauma-hemorrhage increased lung MPO activity and ICAM-1, CINC-1, and CINC-3 levels in ovariectomized females. These parameters were found to be similar to sham-operated animals in proestrus female rats subjected to trauma-hemorrhage. Lung HO-1 protein level in proestrus females was increased significantly compared with female rats subjected to trauma-hemorrhage during diestrus, estrus, and metestrus phases of the reproductive cycle and ovariectomized rats. Furthermore, plasma 17β-estradiol level was highest in proestrus females. Administration of the HO inhibitor chromium mesoporphyrin prevented the attenuation of shock-induced lung damage in proestrus females. Thus these findings suggest that the female reproductive cycle is an important variable in the regulation of lung injury following trauma-hemorrhage and that the protective effect in proestrus females is likely mediated via upregulation of HO-1.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3