Functional role and species-specific contribution of arginases in pulmonary fibrosis

Author:

Kitowska Kamila,Zakrzewicz Dariusz,Königshoff Melanie,Chrobak Izabella,Grimminger Friedrich,Seeger Werner,Bulau Patrick,Eickelberg Oliver

Abstract

Lung fibrosis is characterized by increased deposition of ECM, especially collagens, and enhanced proliferation of fibroblasts. l-arginine is a key precursor of nitric oxide, asymmetric dimethylarginine, and proline, an amino acid enriched in collagen. We hypothesized that l-arginine metabolism is altered in pulmonary fibrosis, ultimately affecting collagen synthesis. Expression analysis of key enzymes in the arginine pathway, protein arginine methyltransferases (Prmt), arginine transporters, and arginases by quantitative (q) RT-PCR and Western blot revealed significant upregulation of arginase-1 and -2, but not Prmt or arginine transporters, during bleomycin-induced pulmonary fibrosis in mice. HPLC revealed a concomitant, time-dependent decrease in pulmonary l-arginine levels. Arginase-1 and -2 mRNA and protein expression was increased in primary fibroblasts isolated from bleomycin-treated mice, compared with controls, and assessed by qRT-PCR and Western blot analysis. TGF-β1, a key profibrotic mediator, induced arginase-1 and -2 mRNA expression in primary and NIH/3T3 fibroblasts. Treatment of fibroblasts with the arginase inhibitor, NG-hydroxy-l-arginine, attenuated TGF-β1-stimulated collagen deposition, but not collagen mRNA expression or Smad signaling, in fibroblasts. In human lungs derived from patients with idiopathic pulmonary fibrosis, arginase activity was unchanged, but arginase-1 expression significantly decreased when compared with donor lungs. Our results thus demonstrate that arginase-1 is expressed and functionally important for collagen deposition in lung fibroblasts. TGF-β1-induced upregulation of arginase-1 suggests an interplay between profibrotic agents and l-arginine metabolism during the course of lung fibrosis in the mouse, whereas species-specific regulatory mechanisms may account for the differences observed in mouse and human.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3