NO responsiveness in pulmonary artery and airway smooth muscle: the role of cGMP regulation

Author:

Kwak Young L.,Jones Keith A.,Warner David O.,Perkins William J.

Abstract

The purpose of this study was to assess intrinsic smooth muscle mechanisms contributing to greater nitric oxide (NO) responsiveness in pulmonary vascular vs. airway smooth muscle. Canine pulmonary artery smooth muscle (PASM) and tracheal smooth muscle (TSM) strips were used to perform concentration response studies to an NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO). PASM exhibited a greater NO responsiveness whether PASM and TSM were contracted with receptor agonists, phenylephrine and acetylcholine, respectively, or with KCl. The >10-fold difference in NO sensitivity in PASM was observed with both submaximal and maximal contractions. This difference in NO responsiveness was not due to differences in endothelial or epithelial barriers, since these were removed, nor was it due to the presence of cGMP-independent NO-mediated relaxation in either tissue. At equal concentrations of NO, the intracellular cGMP concentration ([cGMP]i) was also greater in PASM than in TSM. Phosphodiesterase (PDE) inhibition using isobutylmethylxanthine indicated that the greater [cGMP]iin PASM was not due to greater PDE activity in TSM. Expression of soluble guanylate cyclase (sGC) subunit mRNA (2 ± 0.2 and 1.3 ± 0.2 attomol/μg total RNA, respectively) and protein (47.4 ± 2 and 27.8 ± 3.9 ng/mg soluble homogenate protein, respectively) was greater in PASM than in TSM. sGCα1and sGCβ1mRNA expression was equal in PASM but was significantly different in TSM, suggesting independent regulation of their expression. An intrinsic smooth muscle mechanism accounting for greater NO responsiveness in PASM vs. TSM is greater sGC activity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3