Calcium ionophores injure alveolar epithelial cells: relation to phospholipase activity

Author:

Rice K. L.1,Duane P. G.1,Mielke G.1,Sinha A. A.1,Niewoehner D. E.1

Affiliation:

1. Pulmonary Section, Veterans Administration Medical Center, Minneapolis, Minnesota.

Abstract

Phospholipases and certain of their hydrolytic products are toxic to alveolar epithelial cells. Since many intracellular phospholipases are Ca2+ dependent, we postulated that elevating cytosolic Ca2+ with ionophores might cause epithelial injury via phospholipase activation. Isolated perfused hamster lungs exposed to an Ca2+ ionophore A23187 develop functional evidence of severe epithelial injury. Ultrastructural studies show widespread lysis of type I epithelial cells, with only minimal abnormalities in other lung cells, including the microvascular endothelium. Analysis of whole lung lipid extracts reveals a modest elevation in free arachidonic acid but no changes in other putative products of phospholipase activity. Parallel studies were performed in cultured cells of pulmonary origin. As measured by 51Cr release, A23187 causes substantial cytotoxicity in 3-day-old cultures of rat type II alveolar epithelial cells (RAEC) but not in cultured bovine pulmonary artery endothelial cells (BPAEC). RAEC prelabeled with [14C]stearic acid [( 14C]SA) and [3H]arachidonic acid [( 3H]AA) release radiolabeled free fatty acids (FFA) in response to A23187 in a dose- and time-dependent manner that parallels the cytotoxicity index. Analyses of putative phospholipase products in cells radiolabeled with [14C]SA and [3H]AA, with [14C]choline, or with [14C]ethanolamine suggest that liberation of radiolabeled FFA may be due to several phospholipases but with principal activity being exhibited by a phospholipase C having specificity toward phosphatidylcholine and phosphatidylethanolamine. Prelabeled BPAEC release only minimal quantities of FFA in response to A23187 under the same conditions. These studies demonstrate that elevations of intracytoplasmic Ca2+ are capable of severely and selectively damaging alveolar epithelial cells and that the injury is associated with activation of intracellular phospholipases. These findings may have implications in regard to the pathogenesis of acute lung injury in humans.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3