Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension

Author:

Tang Haiyang123,Chen Jiwang3,Fraidenburg Dustin R.3,Song Shanshan123,Sysol Justin R.34,Drennan Abigail R.3,Offermanns Stefan5,Ye Richard D.4,Bonini Marcelo G.4,Minshall Richard D.4,Garcia Joe G. N.1,Machado Roberto F.3,Makino Ayako2,Yuan Jason X.-J.1234

Affiliation:

1. Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona;

2. Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona;

3. Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois;

4. Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; and

5. Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

Abstract

Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1–3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1 −/− mice were protected against the development and progression of chronic HPH, whereas Akt2 −/− mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1 −/− mice, with no significant effect noted in the Akt2 −/− mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3