Affiliation:
1. Department of Physiology, Michigan State University, East Lansing, Michigan 48824
Abstract
Primary cultures of rat type II alveolar epithelial cells (AECs) or human AEC-derived A549 cells, when exposed to bleomycin (Bleo), exhibited concentration-dependent apoptosis detected by altered nuclear morphology, fragmentation of DNA, activation of caspase-3, and net cell loss over time. In both cell culture models, exposure to Bleo caused time-dependent increases in angiotensinogen (ANGEN) mRNA. Antisense oligonucleotides against ANGEN mRNA inhibited Bleo-induced apoptosis of rat AEC or A549 cells by 83 and 84%, respectively ( P < 0.01 and P < 0.05), and prevented Bleo-induced net cell loss. Apoptosis of rat AECs or A549 cells in response to Bleo was inhibited 91% by the ANG-converting enzyme inhibitor captopril or 82%, respectively, by neutralizing antibodies specific for ANG II (both P < 0.01). Antagonists of ANG receptor AT1 (losartan, L-158809, or saralasin), but not an AT2-selective blocker (PD-123319), inhibited Bleo-induced apoptosis of either rat AECs (79%, P < 0.01) or A549 cells (83%, P < 0.01) and also reduced the activity of caspase-3 by 52% ( P < 0.05). These data indicate that Bleo, like FasL or TNF-α, induces transactivation of ANG synthesis de novo that is required for AEC apoptosis. They also support the theory that ANG system antagonists have potential for the blockade of AEC apoptosis in situ.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献