Affiliation:
1. Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
2. Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
Abstract
Nocturnal asthma is characterized by heightened bronchial reactivity at night, and plasma melatonin concentrations are higher in patients with nocturnal asthma symptoms. Numerous physiological effects of melatonin are mediated via its specific G protein-coupled receptors (GPCRs) named the MT1 receptor, which couples to both Gq and Gi proteins, and the MT2 receptor, which couples to Gi. We investigated whether melatonin receptors are expressed on airway smooth muscle; whether they regulate intracellular cyclic AMP (cAMP) and calcium concentrations ([Ca2+]i), which modulate airway smooth muscle tone; and whether they promote airway smooth muscle cell proliferation. We detected the mRNA and protein expression of the melatonin MT2 but not the MT1 receptor in native human and guinea pig airway smooth muscle and cultured human airway smooth muscle (HASM) cells by RT-PCR, immunoblotting, and immunohistochemistry. Activation of melatonin MT2 receptors with either pharmacological concentrations of melatonin (10–100 µM) or the nonselective MT1/MT2 agonist ramelteon (10 µM) significantly inhibited forskolin-stimulated cAMP accumulation in HASM cells, which was reversed by the Gαi protein inhibitor pertussis toxin or knockdown of the MT2 receptor by its specific siRNA. Although melatonin by itself did not induce an initial [Ca2+]i increase and airway contraction, melatonin significantly potentiated acetylcholine-stimulated [Ca2+]i increases, stress fiber formation through the MT2 receptor in HASM cells, and attenuated the relaxant effect of isoproterenol in guinea pig trachea. These findings suggest that the melatonin MT2 receptor is expressed in ASM, and modulates airway smooth muscle tone via reduced cAMP production and increased [Ca2+]i.
Funder
HHS | NIH | National Institute of General Medical Sciences
HHS | NIH | National Heart, Lung, and Blood Institute
MEXT | Japan Society for the Promotion of Science
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献