Csk/Src/EGFR signaling regulates migration of myofibroblasts and alveolarization

Author:

Li Jianhui1,Li Yahui1,He Hua1,Liu Chengbo1,Li Wen1,Xie Lijuan1,Zhang Yongjun12

Affiliation:

1. Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and

2. MOE and Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China

Abstract

Bronchopulmonary dysplasia (BPD) is characterized by premature alveolar developmental arrest. Antenatal exposure to inflammation inhibits lung morphogenesis, thus increasing the risk of developing BPD. Alveolar myofibroblasts are thought to migrate into the septal tips and elongate secondary septa during alveolarization. Here we found lipopolysaccharide (LPS) disrupted the directional migration of myofibroblasts and increased actin stress fiber expression and focal adhesion formation. In addition, COOH-terminal Src kinase (Csk) activity was downregulated in myofibroblasts treated with LPS, while activation of Src or epidermal growth factor receptor (EGFR) was upregulated by LPS treatment. Specifically, decreased Csk activity and increased activation of Src or EGFR was also observed in primary myofibroblasts isolated from newborn rat lungs with intra-amniotic LPS exposure, a model for BPD. Further investigation revealed that EGFR was involved in cell migration impairment induced by LPS, and Src inhibition blocked LPS-induced activation of EGFR or cell migration impairment. Csk silencing also resulted in EGFR activation and cell migration impairment. Besides, we found the effect of EGFR on myofibroblast migration was mediated through RhoA activation. EGFR inhibition alleviated the abnormal localization of myofibroblasts and improved alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that the Csk/Src/EGFR signaling pathway is critically involved in regulating directional migration of myofibroblasts and may contribute to arrested alveolar development in BPD.

Funder

National Natural Science Foundation of China (NSFC)

Natural Science Foundation of Shanghai (Shanghai Municipal Natural Science Foundation)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3