Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation

Author:

Yee Min1,Cohen Ethan David2,Domm William1,Porter George A.1,McDavid Andrew N.3,O’Reilly Michael A.

Affiliation:

1. Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York

2. Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York

3. Biostatistics and Computational Biology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York

Abstract

Supplemental oxygen given to preterm infants has been associated with permanently altering postnatal lung development. Now that these individuals are reaching adulthood, there is growing concern that early life oxygen exposure may also promote cardiovascular disease through poorly understood mechanisms. We previously reported that adult mice exposed to 100% oxygen between postnatal days 0 and 4 develop pulmonary hypertension, defined pathologically by capillary rarefaction, dilation of arterioles and veins, cardiac failure, and a reduced lifespan. Here, Affymetrix Gene Arrays are used to identify early transcriptional changes that take place in the lung before pulmonary capillary rarefaction. We discovered neonatal hyperoxia reduced expression of cardiac muscle genes, including those involved in contraction, calcium signaling, mitochondrial respiration, and vasodilation. Quantitative RT-PCR, immunohistochemistry, and genetic lineage mapping using Myh6CreER; Rosa26RmT/mG mice revealed this reflected loss of pulmonary vein cardiomyocytes. The greatest loss of cadiomyocytes was seen within the lung followed by a graded loss beginning at the hilum and extending into the left atrium. Loss of these cells was seen by 2 wk of age in mice exposed to ≥80% oxygen and was attributed, in part, to reduced proliferation. Administering mitoTEMPO, a scavenger of mitochondrial superoxide during neonatal hyperoxia prevented loss of these cells. Since pulmonary vein cardiomyocytes help pump oxygen-rich blood out of the lung, their early loss following neonatal hyperoxia may contribute to cardiovascular disease seen in these mice, and perhaps in people who were born preterm.

Funder

HHS | National Institutes of Health (NIH)

American Heart Association (AHA)

Local Wine Auction Pilot

The University of Rochester's Perinatal and Pediatric Origins of Disease Program

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3