Affiliation:
1. Department of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia 5011, Australia
Abstract
The respiratory epithelium is vulnerable to noxious substances, resulting in the shedding of cells and decreased protection. Zinc (Zn), an antioxidant and cytoprotectant, can suppress apoptosis in a variety of cells. Here we used the novel Zn-specific fluorophore Zinquin to visualize and quantify labile intracellular Zn in respiratory epithelial cells. Zinquin fluorescence in isolated ciliated tracheobronchial epithelial cells and intact epithelium from sheep and pigs revealed an intense fluorescence in the apical and mitochondria-rich cytoplasm below the cilia. Zinquin fluorescence was quenched by the Zn chelator N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and increased by the Zn ionophore pyrithione. We also assessed whether changes in intracellular labile Zn would influence susceptibility of these cells to apoptosis by hydrogen peroxide. Our results confirm that Zn deficiency enhanced hydrogen peroxide-induced caspase activation from 1.24 ± 0.12 to 2.58 ± 0.53 units · μg protein−1· h−1( P ≤ 0.05); Zn supplementation suppressed these effects. These findings are consistent with the hypothesis that Zn protects upper respiratory epithelial cells and may have implications for human asthma where there is hypozincemia and epithelial damage.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献