The ultrastructural heterogeneity of lung surfactant revealed by serial section electron tomography: insights into the 3-D architecture of human tubular myelin

Author:

Lettau Marie1ORCID,Timm Sara2ORCID,Dittmayer Carsten3,Lopez-Rodriguez Elena1ORCID,Ochs Matthias14ORCID

Affiliation:

1. Institute of Functional Anatomy, Charité – Universitätsmedizin Berlin, Berlin, Germany

2. Core Facility Electron Microscopy, Charité – Universitätsmedizin Berlin, Berlin, Germany

3. Institute of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany

4. German Center for Lung Research (DZL), Berlin, Germany

Abstract

Weibel’s hypothetical three-dimensional (3-D) model in 1966 provided first ultrastructural details into tubular myelin (TM), a unique, complex surfactant subtype found in the hypophase of the alveolar lining layer. Although initial descriptions by electron microscopy (EM) were already published in the 1950s, a uniform morphological differentiation from other intra-alveolar surfactant subtypes is still missing and potential structure-function relationships remain enigmatic. Technical developments in volume EM methods now allow a more detailed reinvestigation, to address unanswered ultrastructural questions, we analyzed ultrathin sections of humanized SP-A1/SP-A2 coexpressing mouse and human lung samples by conventional transmission EM. We combined these two-dimensional (2-D) information with 3-D analysis of single- and dual-axis electron tomography of serial sections for high z-resolution (in a range of a few nanometers) and extended volumes of up to 1 µm total z-information, this study reveals that TM constitutes a heterogeneous surfactant organization mainly comprised of distorted parallel membrane planes with local intersections, which are distributed all over the TM substructure. These intersecting membrane planes form, among other various polygons, the well-known 2-D “lattice”, respectively 3-D quadratic tubules, which in many analyzed spots of human alveoli appear to be less abundant than also observed nonconcentric 3-D lamellae, the additional application of serial section electron tomography to conventional transmission EM demonstrates a high heterogeneity of TM membrane networks, which indicates dynamic transformations between its substructures. Our method provides an ideal basis for further in and ex vivo structural analyses of surfactant under various conditions at nanometer scale.

Funder

Charité – Universitätsmedizin Berlin

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3