Macrophages primed by overnight culture demonstrate a marked stimulation of surfactant protein A degradation

Author:

Bates Sandra R.1,Xu Jin1,Dodia Chandra1,Fisher Aron B.1

Affiliation:

1. Institute for Environmental Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6068

Abstract

The current study examined whether long-term culture of macrophages affects their metabolism of surfactant components. Compared with freshly isolated resting macrophages in culture for 1 h, macrophages attached to plastic dishes for 24 h showed evidence of conversion to a “primed” state with 1) an altered morphology characterized by a larger size, ruffled membranes, lamellipodia, and a “foamy” appearance after attachment to glass and 2) a fivefold greater respiratory burst in response to phorbol 12-myristate 13-acetate stimulation. On incubation with iodinated surfactant protein A (SP-A), the 24-h alveolar or tissue macrophages showed a 5- or a 23-fold greater increase in SP-A degradation, respectively, than macrophages cultured for 1 h. Conditioned media experiments demonstrated that the elevated rate of SP-A degradation after prolonged culture was not a result of proteases secreted by the macrophages. Incubation of cells with NH4Cl reduced the degradation of SP-A to a similar extent (to 33% of control values) in resting and primed tissue macrophages. On the other hand, length of time of cell culture did not affect macrophage uptake and degradation of [3H]dipalmitoylphosphatidylcholine in mixed unilamellar liposomes. Thus freshly isolated resting tissue and alveolar macrophages can be primed to specifically increase their rate of SP-A degradation. Activation of macrophages associated with lung disease may be important for SP-A metabolism and surfactant function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3