Role of calcium-activated potassium channels and cyclic nucleotides on pulmonary vasoreactivity to serotonin

Author:

Barman S. A.1

Affiliation:

1. Department of Pharmacology and Toxicology, Medical College of Georgia,Augusta 30912, USA.

Abstract

The role of Ca(2+)-activated K+ channel modulation and cyclic nucleotide second messenger signal transduction in the canine pulmonary vascular response to serotonin was determined in the isolated blood-perfused dog lung. Pulmonary vascular resistances and compliances were measured using vascular occlusion techniques. Serotonin (10(-5) M) significantly increased precapillary and postcapillary resistance and significantly decreased total vascular compliance by decreasing large vessel compliance and middle compartment compliance. Tetraethylammonium ions (TEA+; 1 mM), an inhibitor of Ca(2+)-activated K+ channels, significantly potentiated the pressor effect to serotonin on both the pulmonary arteries and pulmonary veins. Pretreatment with the guanosine 3',5'-cyclic monophosphate (cGMP)/adenosine 3',5'-cyclic monophosphate (cAMP) phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (10(-5) M), the cell membrane-permeable analog of cAMP, dibutyryl-cAMP (10(-5) M), or the cAMP-dependent vasodilator isoproterenol (10(-5) M) inhibited the serotonergic response on both the arteries and veins, which was reversed by TEA+. In contrast, the stable membrane-permeable analog of cGMP, 8-bromo-cGMP (10(-5) M), had no effect on serotonin. These results indicate that there is a basal level of vasorelaxation in canine pulmonary blood vessels that is mediated by Ca(2+)-activated K+ channel activity and that inhibition of these K+ channels increases pulmonary vascular tone and potentiates the pulmonary vasoactive response to serotonin. Also, these data suggest that cAMP-induced pulmonary vasodilation is mediated primarily by Ca(2+)-activated K+ channels and that activation of these specific K+ channels attenuates the pressor response to serotonin. Thus an important relationship appears to exist between the cAMP second messenger system and Ca(2+)-activated K+ channels in canine pulmonary vasoreactivity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3