Association of granular exocytosis with Ca(2+)-activated K+ channels in human eosinophils

Author:

Saito M.1,Sato R.1,Munoz N. M.1,Herrnreiter A.1,Oyaizu M.1,Kasugai H.1,Narahashi T.1,Leff A. R.1

Affiliation:

1. Department of Molecular Pharmacology and Biological Chemistry,Northwestern University Medical School, Chicago 60611-3008, USA.

Abstract

We studied the mechanism of degranulation caused by Ca(2+)-activated K+ channels (KCa channels) in eosinophils isolated from mildly atopic donors using negative immunoselection. Stimulation of eosinophils with 0.1 microM platelet-activating factor (PAF) caused activation of single channels as recorded by the cell-attached patch-clamp technique. These channels were selectively permeable to K+ because the reversal potential was close to the equilibrium potential for K+. However, the channels were not permeable to Na+ or Cl- as demonstrated by ion substitution experiments. The calcium ionophore A-23187, at 1 microM, increased the K+ channel activity in the presence of Ca2+ in the external perfusate but did not induce channel activity in the absence of Ca2+. Similar results were obtained with another calcium ionophore, ionomycin (1 microM), and the Ca(2+)-releasing agent thapsigargin (10 microM). K+ channels activated by PAF and A-23187 had similar characteristics: two levels of single-channel conductances were observed, 10 +/- 1.5 and 22 +/- 1.7 pS as induced by PAF and 11 +/- 1.3 and 24 +/- 1.9 pS by A-23187; the mean open times of the large-conductance channels were 1.45 +/- 0.3 ms as induced by PAF and 1.26 +/- 0.5 ms by A-23187. These results indicate that PAF activates KCa channels. Both KCa currents and major basic protein release caused by A-23187 were blocked by quinidine. It is suggested that KCa channels are associated with granule secretion in human eosinophils.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3