Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in l-NAME-treated rats

Author:

Dhaliwal Jasdeep S.,Casey David B.,Greco Anthony J.,Badejo Adeleke M.,Gallen Thomas B.,Murthy Subramanyam N.,Nossaman Bobby D.,Hyman Albert L.,Kadowitz Philip J.

Abstract

The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. l-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after l-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca++ entry blocker isradipine also decreased pulmonary and systemic arterial pressure in l-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of l-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following l-NAME treatment are mediated by Rho kinase and Ca++ entry through L-type channels, and that responses to l-NAME can be reversed by an NO donor.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3