Meridian interference reveals neural locus of motion-induced position shifts

Author:

Liu Sirui1,Tse Peter U.1,Cavanagh Patrick12

Affiliation:

1. Department of Psychological and Brian Sciences, Dartmouth College, Hanover, New Hampshire

2. Department of Psychology, Glendon College, Toronto, Ontario, Canada

Abstract

When a Gabor patch moves along a path in one direction while its internal texture drifts orthogonally to this path, it can appear to deviate from its physical path by 45° or more. This double-drift illusion is different from other motion-induced position shift effects in several ways: it has an integration period of over a second; the illusory displacement that accumulates over a second or more is orthogonal to rather than along the motion path; the perceptual deviations are much larger; and they have little or no effect on eye movements to the target. In this study we investigated the underlying neural mechanisms of the motion integration and position processing for this double-drift stimulus by testing possible anatomical constraints on its magnitude. We found that the illusion was reduced at the vertical and horizontal meridians when the perceptual path would cross or be driven toward the meridian, but not at other locations or other motion directions. The disruption of the accumulation of the position error at both the horizontal and vertical meridians suggests a central role of quadrantic areas in the generation of this type of motion-induced position shift. NEW & NOTEWORTHY The remarkably strong double-drift illusion is disrupted at both the vertical and horizontal meridians. We propose that this finding is the behavioral consequence of the anatomical gaps at both meridians, suggesting that neural areas with quadrantic representations (e.g., V2, V3) are the initial locus of this motion-induced position shift. This result rules out V1 as the source of the illusion because it has an anatomical break only at the vertical meridian.

Funder

John Templeton Foundation

National Science Foundation (NSF)

Department of Psychological and Brain Sciences, Dartmouth College

EC | European Research Council (ERC)

York University

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3