Differential Inhibition of Ca2+ Channels by α2-Adrenoceptors in Three Functional Subclasses of Rat Sympathetic Neurons

Author:

Li Chen,Horn John P.

Abstract

A comparison of identified sympathetic neurons in the isolated intact superior cervical ganglion revealed that secretomotor, pilomotor, and vasoconstrictor cells differ in their action potential mechanisms and in their postsynaptic α2-adrenergic responses to 10 μM norepinephrine (NE). In normal saline, the half-width of the spike afterhyperpolarization (AHP) in secretomotor neurons (103.5 ± 6.2 ms) was twofold that recorded in vasoconstrictor neurons (47.7 ± 2.9 ms) and 1.5-fold that in pilomotor neurons (71.4 ± 10.3 ms). Bath-applied NE reversibly inhibited the action potential repolarization shoulder, AHP amplitude, and AHP duration in secretomotor and pilomotor neurons to a similar extent, but had no effect on vasoconstrictor neurons. The insensitivity of vasomotor neurons to NE was not an artifact produced by microelectrode recording because all three cell groups were similar in terms of resting potential and input resistance. Moreover, NE insensitivity was not a natural consequence of briefer AHP duration in vasoconstrictor cells. Adding 10 mM TEA+ caused marked accentuation of the shoulder and AHP duration in vasoconstrictor neurons and comparable changes in the other two cell types, but did not unmask any sign of NE sensitivity in the vasoconstrictors. However, the spike shoulder and AHP in vasoconstrictors were Cd2+ sensitive, blocked by ω-conotoxin, an N-type calcium channel antagonist, and inhibited by oxotremorine-M, a muscarinic receptor agonist. These data show that NE can differentially modulate functional subsets of mammalian sympathetic neurons and that NE insensitivity can serve as a practical experimental criterion for identification of vasomotor neurons in the isolated ganglion.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3