Developmental increase in hippocampal endocannabinoid mobilization: role of metabotropic glutamate receptor subtype 5 and phospholipase C

Author:

Liang Shu-Ling1,Alger Bradley E.23,McCarthy Margaret M.234

Affiliation:

1. Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China;

2. Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland;

3. Departments of Physiology and Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland; and

4. Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland

Abstract

Endocannabinoids (eCBs) released from postsynaptic neurons mediate retrograde suppression of neurotransmitter release at central synapses. eCBs are crucial for establishing proper synaptic connectivity in the developing nervous system. Mobilization of eCBs is driven either by a rise in intracellular Ca2+ (depolarization-induced suppression of inhibition, DSI) or postsynaptic G protein-coupled receptors (GPCRs) that activate phospholipase C beta (PLCβ). To determine whether eCB mobilization changes between neonatal and juvenile ages, we used whole cell voltage-clamp recordings of CA1 neurons from rat hippocampal slices at postnatal days 1–18 (neonatal) and 19–43 (juvenile), because many neurophysiological parameters change dramatically between approximately postnatal days 18–20. We found that DSI was slightly greater in juveniles than in neonates, while eCB mobilization stimulated by GPCRs was unchanged. However, when DSI was elicited during GPCR activation, its increase was much greater in juveniles, suggesting that eCB mobilization caused by the synergy between the Ca2+ and GPCR pathways is developmentally upregulated. Western blotting revealed significant increases in both metabotropic type glutamate receptor 5 (mGluR5) and PLCβ1 proteins in juveniles compared with neonates. Responses to pharmacological activation or inhibition of PLC implied that eCB upregulation is associated with a functional increase in PLC activity. We conclude that synergistic eCB mobilization in hippocampal CA1 neurons is greater in juveniles than in neonates, and that this may result from increases in the mGluR5-PLCβ1 eCB pathway. The data enhance our understanding of the developmental regulation of the eCB system and may provide insight into diseases caused by improper cortical wiring, or the impact of cannabis exposure during development.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3