Space and frequency are represented separately in auditory midbrain of the owl

Author:

Knudsen E. I.,Konishi M.

Abstract

1. The influence of sound location and sound frequency on the responses of single units in the midbrain auditory area (MLD) of the owl (Tyto alba) were studied using a movable sound source under free-field conditions. With this technique, two functionally distinct regions in MLD have been identified: a tonotopic region and a space-mapped region. 2. MLD units were classified according to their receptive-field properties: 1) limited-field units responded only to sound from a small, discrete area of space; 2) complex-field units exhibited two to four different excitatory areas separated by areas of reduced response or inhibition: 3) space-preferring units responded best to a certain area of space, but their fields expanded considerably with increasing sound intensities; 4) Space-independent units responded similarly to a sound stimulus regardless of its location in space. 3. Limited-field units were located exclusively along the lateral and anterior borders of MLD. These units were tuned to sound frequencies at the high end of the owl's audible range (5-8.7 kHz). They usually responded only at the onset of a tonal stimulus; but most importantly, the units were systematically arranged in this region according to the azimuths and elevations of their receptive fields, thus creating a physiological map of auditory space. Because of this latter, dominant aspect of its functional organization, this region is named the space-mapped region of MLD. 4. The receptive fields of units in the larger, medial portion of MLD were of the space-independent, space-preferring, or complex-field types. These units tended to respond in a sustained fashion to tone and noise bursts, and these units were arranged in a strict frequency-dependent order. Based on this last property, this region is named the tonotopic region of MLD. 5. Because of the salient differences in the response properties of their constituent units, it is argued that the space-mapped region and the tonotopic region are involved in different aspects of sound analysis.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 237 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3