Indirect, across-the-midline retinotectal projections and representation of ipsilateral visual field in superior colliculus of the cat

Author:

Antonini A.,Berlucchi G.,Sprague J. M.

Abstract

1. In agreement with previous work, we have found that the ipsilateral visual field is represented in an extensive rostral portion--from one-third to one-half--of the superior colliculus (SC) of the cat. This representation is binocular. The SC representation of the ipsilateral visual field can be mediated both directly, by crossed retinotectal connections originating from temporal hemiretina, and indirectly, by across-the-midline connections relaying visual information from one-half of the brain to contralateral SC. 2. In order to study the indirect, across-the-midline visual input to the SC, we have recorded responses of SC neurons to visual stimuli presented to either the ipsilateral or the contralateral eye of cats with a midsagittal splitting of the optic chiasm. Units driven by the ipsilateral eye, presumably through the direct retinotectal input and/or corticotectal connections from ipsilateral visual cortex, were found throughout the SC, except at its caudal pole, which normally receives fibers from the extreme periphery of the contralateral nasal hemiretina. Units driven by the contralateral eye, undoubtedly through an indirect across-the-midline connection, were found only in the anterior portion of the SC, in which is normally represented the ipsilateral visual field. Receptive fields in both ipsilateral and contralateral eye had properties typical of SC receptive fields in cats with intact optic pathways. 3. All units having a receptive field in the contralateral eye had also a receptive field in the ipsilateral eye; for each of these units, the receptive fields in both eyes invariably abutted the vertical meridian of the visual field. The receptive field in one eye had about the same elevation relative to the horizontal meridian and the same vertical extension as the receptive field in the other eye; the two receptive fields of each binocular unit matched each other at the vertical meridian and formed a combined receptive field straddling the vertical midline of the horopter...

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3