Synaptic transmission without action potentials: input-output properties of a nonspiking presynaptic neuron

Author:

Graubard K.

Abstract

1. Input-output properties of the inhibitory synaptic connection between non-spiking neurons (EX1) and gastric mill (GM) neurons were examined in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus. Current was injected into and the voltage was recorded during current injection, two independent microelectrodes were used. 2. The EX1-GM synaptic connection is a conductance-increase inhibitory type, with an input-output curve that resembles the curve for the squid giant synapse. There is a threshold level of depolarization for transmitter release from the presynaptic cell. Beyond that threshold, increasing presynaptic depolarization causes increasing postsynaptic hyperpolarization (and inhibition). 3. A long presynaptic current step always causes a postsynaptic response with an initial peak of hyperpolarization followed by a decay to a less hyperpolarized plateau level. The plateau level is maintained, in most cells, for the duration of the presynaptic depolarization even over long periods (30 s). 4. The peak, but not the plateau, part of the postsynaptic response is sensitive to the past history of the synaptic connection. If a large conditioning pulse is applied to the presynaptic cell causing a large postsynaptic hyperpolarization, then the postsynaptic response to a later presynaptic test depolarization will have a reduced peak, leaving the plateau component unchanged.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3