Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina

Author:

Nelson R.,Famiglietti E. V.,Kolb H.

Abstract

1. Ganglion cells in the retina of the cat were stained by intracellular dye injection after recording their responses to photic stimulation. 2. All cells encountered were divided into those giving on-responses and those producing off-responses, and the level of dendritic branching of these two groups was compared. Cells giving off-responses were found to branch high in the inner plexiform layer (IPL), near the amacrine cell bodies (sublamina a); those giving on-responses were found to branch lower in the inner plexiform layer (sublamina b). 3. Dye-injected cells varied widely in morphology and size, having cell bodies ranging in diameter from 8 to 32 micrometer and dendritic fields ranging from 25 to 490 micrometer in diameter; yet the sign of the response of each unit correlated only with the level of dendritic branching. Thus, no other morphological feature except stratification appears to be important in determining the sign of the response of these cells. 4. The stratification of ganglion cells into on- and off-layers parallels the distribution of the axon terminals of the flat and invaginating cone bipolars. Flat cone bipolars are in a position to contact off-center ganglion cells (in sublamina a) and invaginating cone bipolars are in a position to contact on-center ganglion cells (in sublamina b). 5. The rod and cone inputs to some cells were characterized by comparing their responses to deep red and blue rod-matched stimuli over a 2-log unit range starting at dark-adapted threshold. About half the cells appeared to be rod dominated under these conditions, whereas the others appeared to have mixed rod and cone signals. 6. The nature of the rod and cone pathways to ganglion cells is discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3