Cortical and Subcortical Correlates of Electroencephalographic Alpha Rhythm Modulation

Author:

Feige Bernd,Scheffler Klaus,Esposito Fabrizio,Di Salle Francesco,Hennig Jürgen,Seifritz Erich

Abstract

Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-level-dependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG was separated into spatial components of maximal temporal independence using independent component analysis. Alpha component amplitudes and stimulus conditions served as general linear model regressors of the fMRI signal time course. In both paradigms, EEG alpha component amplitudes were associated with BOLD signal decreases in occipital areas, but not in thalamus, when a standard BOLD response curve (maximum effect at ∼6 s) was assumed. The part of the alpha regressor independent of the protocol condition, however, revealed significant positive thalamic and mesencephalic correlations with a mean time delay of ∼2.5 s between EEG and BOLD signals. The inverse relationship between EEG alpha amplitude and BOLD signals in primary and secondary visual areas suggests that widespread thalamocortical synchronization is associated with decreased brain metabolism. While the temporal relationship of this association is consistent with metabolic changes occurring simultaneously with changes in the alpha rhythm, sites in the medial thalamus and in the anterior midbrain were found to correlate with short time lag. Assuming a canonical hemodynamic response function, this finding is indicative of activity preceding the actual EEG change by some seconds.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference53 articles.

1. Andersen P, Andersson SA, Junge K, Lomo T, and Sveen OH. Physiological mechanism of the slow 10c/sec cortical rhythmic activity. Electroencephalogr Clin Neurophysiol 23: 394–395, 1967.

2. Sub-second “temporal attention” modulates alpha rhythms. A high-resolution EEG study

3. An Information-Maximization Approach to Blind Separation and Blind Deconvolution

4. Über das Elektrenkephalogramm des Menschen

5. Berger H. Über das Elektrenkephalogramm des Menschen II. J Psychol Neurol 40: 160–179, 1930.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3