SK (KCa2) Channels Do Not Control Somatic Excitability in CA1 Pyramidal Neurons But Can Be Activated by Dendritic Excitatory Synapses and Regulate Their Impact

Author:

Gu Ning,Hu Hua,Vervaeke Koen,Storm Johan F.

Abstract

Calcium-activated K+ channels of the KCa2 type (SK channels) are prominently expressed in the mammalian brain, including hippocampus. These channels are thought to underlie neuronal excitability control and have been implicated in plasticity, memory, and neural disease. Contrary to previous reports, we found that somatic spike-evoked medium afterhyperpolarizations (mAHPs) and corresponding excitability control were not caused by SK channels but mainly by Kv7/KCNQ/M channels in CA1 hippocampal pyramidal neurons. Thus apparently, these SK channels are hardly activated by somatic Na+ spikes. To further test this conclusion, we used sharp electrode, whole cell, and perforated-patch recordings from rat CA1 pyramidal neurons. We found that SK channel blockers consistently failed to suppress mAHPs under a range of experimental conditions: mAHPs following single spikes or spike trains, at −60 or −80 mV, at 20–30°C, in low or elevated extracellular [K+], or spike trains triggered by synaptic stimulation after blocking N-methyl-d-aspartic acid receptors (NMDARs). Nevertheless, we found that SK channels in these cells were readily activated by artificially enhanced Ca2+ spikes, and an SK channel opener (1-ethyl-2-benzimidazolinone) enhanced somatic AHPs following Na+ spikes, thus reducing excitability. In contrast to CA1 pyramidal cells, bursting pyramidal cells in the subiculum showed a Na+ spike-evoked mAHP that was reduced by apamin, indicating cell-type-dependent differences in mAHP mechanisms. Testing for other SK channel functions in CA1, we found that field excitatory postsynaptic potentials mediated by NMDARs were enhanced by apamin, supporting the idea that dendritic SK channels are activated by NMDAR-dependent calcium influx. We conclude that SK channels in rat CA1 pyramidal cells can be activated by NMDAR-mediated synaptic input and cause feedback regulation of synaptic efficacy but are normally not appreciably activated by somatic Na+ spikes in this cell type.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3