Applicability of White-Noise Techniques to Analyzing Motion Responses

Author:

van Kleef Joshua P.1,Stange Gert1,Ibbotson Michael R.1

Affiliation:

1. Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia

Abstract

Motion processing in visual neurons is often understood in terms of how they integrate light stimuli in space and time. These integrative properties, known as the spatiotemporal receptive fields (STRFs), are sometimes obtained using white-noise techniques where a continuous random contrast sequence is delivered to each spatial location within the cell's field of view. In contrast, motion stimuli such as moving bars are usually presented intermittently. Here we compare the STRF prediction of a neuron's response to a moving bar with the measured response in second-order interneurons (L-neurons) of dragonfly ocelli (simple eyes). These low-latency neurons transmit sudden changes in intensity and motion information to mediate flight and gaze stabilization reflexes. A white-noise analysis is made of the responses of L-neurons to random bar stimuli delivered either every frame (densely) or intermittently (sparsely) with a temporal sequence matched to the bar motion stimulus. Linear STRFs estimated using the sparse stimulus were significantly better at predicting the responses to moving bars than the STRFs estimated using a traditional dense white-noise stimulus, even when second-order nonlinear terms were added. Our results strongly suggest that visual adaptation significantly modifies the linear STRF properties of L-neurons in dragonfly ocelli during dense white-noise stimulation. We discuss the ability to predict the responses of visual neurons to arbitrary stimuli based on white-noise analysis. We also discuss the likely functional advantages that adaptive receptive field structures provide for stabilizing attitude during hover and forward flight in dragonflies.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3