ASIC3 and ASIC1 Mediate FMRFamide-Related Peptide Enhancement of H+-Gated Currents in Cultured Dorsal Root Ganglion Neurons

Author:

Xie Jinghui1,Price Margaret P.2,Wemmie John A.34,Askwith Candice C.21,Welsh Michael J.215

Affiliation:

1. Internal Medicine,

2. Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, Departments of

3. Psychiatry, University of Iowa; and

4. Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242

5. Physiology and Biophysics, and

Abstract

The acid-sensing ion channels (ASICs) form cation channels that are transiently activated by extracellular protons. They are expressed in dorsal root ganglia (DRG) neurons and in the periphery where they play a function in nociception and mechanosensation. Previous studies showed that FMRFamide and related peptides potentiate H+-gated currents. To better understand this potentiation, we examined the effect of FMRFamide-related peptides on DRG neurons from wild-type mice and animals missing individual ASIC subunits. We found that FMRFamide and FRRFamide potentiated H+-gated currents of wild-type DRG in a dose-dependent manner. They increased current amplitude and slowed desensitization following a proton stimulus. Deletion of ASIC3 attenuated the response to FMRFamide-related peptides, whereas the loss of ASIC1 increased the response. The loss of ASIC2 had no effect on FMRFamide-dependent enhancement of H+-gated currents. These data suggest that FMRFamide-related peptides modulate DRG H+-gated currents through an effect on both ASIC1 and ASIC3 and that ASIC3 plays the major role. The recent discovery of RFamide-related peptides (RFRP) in mammals suggested that they might also modulate H+-gated current. We found that RFRP-1 slowed desensitization of H+-gated DRG currents, whereas RFRP-2 increased the peak amplitude. COS-7 cells heterologously expressing ASIC1 or ASIC3 showed similar effects. These results suggest that FMRFamide-related peptides, including the newly identified RFRPs, modulate H+-gated DRG currents through ASIC1 and ASIC3. The presence of several ASIC subunits, the diversity of FMRFamide-related peptides, and the distinct effects on H+-gated currents suggest the possibility of substantial complexity in modulation of current in DRG sensory neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3