Affiliation:
1. Department of Integrative Medical Biology, Section for Physiology, Umeå University, Umeå; and
2. The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
Abstract
The aim of the present study was to clarify the identity of slow spontaneous currents, the underlying mechanism and possible role for impulse generation in neurons of the rat medial preoptic nucleus (MPN). Acutely dissociated neurons were studied with the perforated patch-clamp technique. Spontaneous outward currents, at a frequency of ∼0.5 Hz and with a decay time constant of ∼200 ms, were frequently detected in neurons when voltage-clamped between approximately −70 and −30 mV. The dependence on extracellular K+ concentration was consistent with K+ as the main charge carrier. We concluded that the main characteristics were similar to those of spontaneous miniature outward currents (SMOCs), previously reported mainly for muscle fibers and peripheral nerve. From the dependence on voltage and from a pharmacological analysis, we concluded that the currents were carried through small-conductance Ca2+-activated (SK) channels, of the SK3 subtype. From experiments with ryanodine, xestospongin C, and caffeine, we concluded that the spontaneous currents were triggered by Ca2+ release from intracellular stores via ryanodine receptor channels. An apparent voltage dependence was explained by masking of the spontaneous currents as a consequence of steady SK-channel activation at membrane potentials > −30 mV. Under current-clamp conditions, corresponding transient hyperpolarizations occasionally exceeded 10 mV in amplitude and reduced the frequency of spontaneous impulses. In conclusion, MPN neurons display spontaneous hyperpolarizations triggered by Ca2+ release via ryanodine receptors and SK3-channel activation. Thus such events may affect impulse firing of MPN neurons.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献