Responses to Tactile Stimulation in Deep Cerebellar Nucleus Neurons Result From Recurrent Activation in Multiple Pathways

Author:

Rowland Nathan C.,Jaeger Dieter

Abstract

In a previous study, we found that neurons in the deep cerebellar nuclei (DCN) respond to 5-ms brief facial tactile stimulation in rats anesthetized with ketamine-xylazine with multiphasic response patterns lasting over 200 ms. It remained unclear, however, to what extent these responses were shaped not only by ascending sensory input from the trigeminal nuclei but also by interactions with other major cerebellar afferent systems, in particular the inferior olive (IO) and cerebral cortex. In the present study, we recorded from the IO, cerebral cortex, cerebellar granule cell layer (GCL), and DCN during the presentation of 5-ms facial tactile stimuli to elucidate potential mechanisms of how extended DCN response patterns are generated. We found that tactile stimulation resulted in robust multiphasic local field potentials responses in the IO as well as in the activation of a wide region of the somatosensory cortex (SI) and the primary motor cortex (MI). DCN neurons responded to electrical stimulation of any of these structures (IO, SI, and MI) with complex temporal patterns strikingly similar to air-puff lip stimulation responses. Simultaneous recordings from multiple structures revealed that long-lasting activation patterns elicited in DCN neurons were based on recurrent network activation in particular between the IO and the DCN with a potential contribution of DCN rebound properties. These results are consistent with the hypothesis that sensory stimulation triggers a feedback network activation of cerebellum, IO, and cerebral cortex to generate temporal patterns of activity that may control the timing of behavior.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3