Affiliation:
1. Department of Neurobiology, University of Konstanz, Konstanz, Germany
Abstract
The olfactory system is a classical model for studying sensory processing. The first olfactory brain center [the olfactory bulb of vertebrates and the antennal lobe (AL) of insects] contains spherical neuropiles called glomeruli. Each glomerulus receives the information from one olfactory receptor type. Interglomerular computation is accomplished by lateral connectivity via interneurons. However, the spatial and functional organization of these lateral connections is not completely understood. Here we studied the spatial logic in the AL of the honeybee. We combined topical application of neurotransmitters, olfactory stimulations, and in vivo calcium imaging to visualize the arrangement of lateral connections. Suppression of activity in a single glomerulus with γ-aminobutyric acid (GABA) while presenting an odor reveals the existence of inhibitory interactions. Stimulating a glomerulus with acetylcholine (ACh) activates inhibitory interglomerular connections that can reduce odor-evoked responses. We show that this lateral network is patchy, in that individual glomeruli inhibit other glomeruli with graded strength, but in a spatially discontinuous manner. These results suggest that processing of olfactory information requires combinatorial activity patterns with complex topologies across the AL.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献