Facilitation and Inhibition of Tibialis Anterior Responses to Corticospinal Stimulation After Maximal Voluntary Contractions

Author:

Giesebrecht Sabine1,Martin Peter G.1,Gandevia Simon C.1,Taylor Janet L.1

Affiliation:

1. Prince of Wales Medical Research Institute and the University of New South Wales, Sydney, Australia

Abstract

The corticospinal pathway is the major pathway controlling human voluntary movements. After strong voluntary contractions, the efficacy of corticospinal transmission to elbow flexors is reduced for ∼90 s, and this limits motoneuronal output. This reduction may reflect activity-dependent changes at cortico-motoneuronal synapses. We investigated whether similar changes occur in a leg muscle, tibialis anterior (TA). Electrical stimuli over high thoracic vertebrae activated corticospinal axons to evoke an EMG response in TA (TMEP). Stimuli were delivered before and after short 10-s and prolonged 1-min maximal contractions (MVCs) of ankle dorsiflexors. In two studies, stimuli were given with the muscle relaxed. In other studies, stimuli were given during weak contraction. After a 10-s MVC ( study 1, n = 10), TMEPs increased immediately to 349 ± 335% (mean ± SD) of control values. By 1 min after contraction, TMEPs decreased to 38 ± 28% of control and remained depressed for >10 min. Facilitation (191 ± 133% control) and depression (18 ± 22% control) occurred over the same time course after the 1-min MVC ( study 2, n = 10). When tested during weak contraction ( study 3, n = 10), TMEPs showed less facilitation (131 ± 41% control) and less depression (67 ± 21% control) and responses returned to baseline over ∼15 min. In contrast to TMEPs, H-reflexes in TA were little changed after a 10-s MVC ( study 4, n = 7). Our findings reveal an immediate facilitation and subsequent longer-lasting depression in corticospinal transmission to TA, which originate at a premotoneuronal site. This behavior differs markedly from that in elbow flexor muscles and suggests that activity-dependent changes in the motor pathway may be muscle specific.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3