Dendritic Ih Ensures High-Fidelity Dendritic Spike Responses of Motion-Sensitive Neurons in Rat Superior Colliculus

Author:

Endo Toshiaki,Tarusawa Etsuko,Notomi Takuya,Kaneda Katsuyuki,Hirabayashi Masumi,Shigemoto Ryuichi,Isa Tadashi

Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that generate Ih currents are widely distributed in the brain and have been shown to contribute to various neuronal functions. In the present study, we investigated the functions of Ih in the motion-sensitive projection neurons [wide field vertical (WFV) cells] of the superior colliculus, a pivotal visual center for detection of and orientating to salient objects. Combination of whole cell recordings and immunohistochemical investigations suggested that HCN1 channels dominantly contribute to the Ih in WFV cells among HCN isoforms expressed in the superficial superior colliculus and mainly located on their expansive dendritic trees. We found that blocking Ih suppressed the initiation of short- and fixed-latency dendritic spike responses and led instead to long- and fluctuating-latency somatic spike responses to optic fiber stimulations. These results suggest that the dendritic Ih facilitates the dendritic initiation and/or propagation of action potentials and ensures that WFV cells generate spike responses to distal synaptic inputs in a sensitive and robustly time-locked manner, probably by acting as continuous depolarizing drive and fixing dendritic membrane potentials close to the spike threshold. These functions are different from known functions of dendritic Ih revealed in hippocampal and neocortical pyramidal cells, where they spatiotemporally limit the propagations of synaptic inputs along the apical dendrites by reducing dendritic membrane resistance. Thus we have revealed new functional aspects of Ih, and these dendritic properties are likely critical for visual motion processing in these neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3