Meta-analysis of biological variables’ impact on spinal motoneuron electrophysiology data

Author:

Highlander Morgan M.1,Allen John M.2,Elbasiouny Sherif M.21ORCID

Affiliation:

1. Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio

2. Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio

Abstract

Experimental, methodological, and biological variables must be accounted for statistically to maximize accuracy and comparability of published neuroscience data. However, accounting for all variables is nigh impossible. Thus we aimed to identify particularly influential variables within published neurological data, from cat, rat, and mouse studies, via a robust statistical process. Our goal was to develop tools to improve rigor in the collection and analysis of data. We strictly constrained experimental and methodological variables and then assessed four key biological variables within motoneuron research: species, age, sex, and cell type. We quantified intraexperimental and interexperimental variances in 11 commonly reported electrophysiological properties of spinal motoneurons. We first assessed variances without accounting for biological variables and then reassessed them while accounting for all four variables. We next assessed variances with all possible combinations of these four variables. We concluded that some motoneuron properties have low intraexperimental, but high interexperimental, variance; that individual motoneuron properties are impacted differently by biological variables; and that some unexplained variances still remain. We report here the optimal combinations of biological variables to reduce interexperimental variance for all 11 parameters. We also rank each parameter by intra- and interexperimental consistency. We expect these results to assist with design of experimental and analytical methods, and to support accuracy in simulations. Furthermore, although demonstrated on spinal motoneuron electrophysiology literature, our approach is applicable to biological data from all fields of neuroscience. This approach represents an important aid to experimental design, comparison of reported data, and reduction of unexplained variance in neuroscience data. NEW & NOTEWORTHY Our meta-analysis shows the impact of species, age, sex, and cell type on lumbosacral motoneuron electrophysiological properties by thoroughly quantifying variances across literature for the first time. We quantify the variances of 11 motoneuron properties with consideration of biological variables, thus providing specific insights for motoneuron modelers and experimenters, and providing a general methodological template for the quantification of variance in neurological data with the consideration of any experimental, methodological, or biological variables of interest.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

National Academy of Sciences

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3