Estimating properties of the fast and slow adaptive processes during sensorimotor adaptation

Author:

Albert Scott T.1,Shadmehr Reza1ORCID

Affiliation:

1. Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland

Abstract

Experience of a prediction error recruits multiple motor learning processes, some that learn strongly from error but have weak retention and some that learn weakly from error but exhibit strong retention. These processes are not generally observable but are inferred from their collective influence on behavior. Is there a robust way to uncover the hidden processes? A standard approach is to consider a state space model where the hidden states change following experience of error and then fit the model to the measured data by minimizing the squared error between measurement and model prediction. We found that this least-squares algorithm (LMSE) often yielded unrealistic predictions about the hidden states, possibly because of its neglect of the stochastic nature of error-based learning. We found that behavioral data during adaptation was better explained by a system in which both error-based learning and movement production were stochastic processes. To uncover the hidden states of learning, we developed a generalized expectation maximization (EM) algorithm. In simulation, we found that although LMSE tracked the measured data marginally better than EM, EM was far more accurate in unmasking the time courses and properties of the hidden states of learning. In a power analysis designed to measure the effect of an intervention on sensorimotor learning, EM significantly reduced the number of subjects that were required for effective hypothesis testing. In summary, we developed a new approach for analysis of data in sensorimotor experiments. The new algorithm improved the ability to uncover the multiple processes that contribute to learning from error. NEW & NOTEWORTHY Motor learning is supported by multiple adaptive processes, each with distinct error sensitivity and forgetting rates. We developed a generalized expectation maximization algorithm that uncovers these hidden processes in the context of modern sensorimotor learning experiments that include error-clamp trials and set breaks. The resulting toolbox may improve the ability to identify the properties of these hidden processes and reduce the number of subjects needed to test the effectiveness of interventions on sensorimotor learning.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

DOD | ONR | Office of Naval Research Global (ONR Global)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3