Knockouts reveal overlapping functions of M2 and M4 muscarinic receptors and evidence for a local glutamatergic circuit within the laterodorsal tegmental nucleus

Author:

Kohlmeier Kristi A.1,Ishibashi Masaru2,Wess Jürgen3,Bickford Martha E.4,Leonard Christopher S.2

Affiliation:

1. Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;

2. Department of Physiology, New York Medical College, Valhalla, New York

3. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland;

4. Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky; and

Abstract

Cholinergic neurons in the laterodorsal tegmental (LDT) and peduncolopontine tegmental (PPT) nuclei regulate reward, arousal, and sensory gating via major projections to midbrain dopamine regions, the thalamus, and pontine targets. Muscarinic acetylcholine receptors (mAChRs) on LDT neurons produce a membrane hyperpolarization and inhibit spike-evoked Ca2+ transients. Pharmacological studies suggest M2 mAChRs are involved, but the role of these and other localized mAChRs (M1--M4) has not been definitively tested. To identify the underlying receptors and to circumvent the limited receptor selectivity of available mAChR ligands, we used light- and electron-immunomicroscopy and whole cell recording with Ca2+ imaging in brain slices from knockout mice constitutively lacking either M2, M4, or both mAChRs. Immunomicroscopy findings support a role for M2 mAChRs, since cholinergic and noncholinergic LDT and pedunculopontine tegmental neurons contain M2-specific immunoreactivity. However, whole cell recording revealed that the presence of either M2 or M4 mAChRs was sufficient, and that the presence of at least one of these receptors was required for these carbachol actions. Moreover, in the absence of M2 and M4 mAChRs, carbachol elicited both direct excitation and barrages of spontaneous excitatory postsynaptic potentials (sEPSPs) in cholinergic LDT neurons mediated by M1 and/or M3 mAChRs. Focal carbachol application to surgically reduced slices suggest that local glutamatergic neurons are a source of these sEPSPs. Finally, neither direct nor indirect excitation were knockout artifacts, since each was detected in wild-type slices, although sEPSP barrages were delayed, suggesting M2 and M4 receptors normally delay excitation of glutamatergic inputs. Collectively, our findings indicate that multiple mAChRs coordinate cholinergic outflow from the LDT in an unexpectedly complex manner. An intriguing possibility is that a local circuit transforms LDT muscarinic inputs from a negative feedback signal for transient inputs into positive feedback for persistent inputs to facilitate different firing patterns across behavioral states.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3