Pre- and postnatal differences in membrane, action potential, and ion channel properties of rostral nucleus of the solitary tract neurons

Author:

Suwabe Takeshi1,Mistretta Charlotte M.1,Krull Catherine1,Bradley Robert M.12

Affiliation:

1. Department of Biologic and Materials Sciences, School of Dentistry, and

2. Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, Michigan

Abstract

There is little known about the prenatal development of the rostral nucleus of the solitary tract (rNST) neurons in rodents or the factors that influence circuit formation. With morphological and electrophysiological techniques in vitro, we investigated differences in the biophysical properties of rNST neurons in pre- and postnatal rats from embryonic day 14 (E14) through postnatal day 20. Developmental changes in passive membrane and action potential (AP) properties and the emergence and maturation of ion channels important in neuron function were characterized. Morphological maturation of rNST neurons parallels changes in passive membrane properties. Mean soma size, dendritic branch points, neurite endings, and neurite length all increase prenatally. whereas neuron resting membrane potential, input resistance, and time constant decrease. Dendritic spines, on the other hand, develop after birth. AP discharge patterns alter in pre- and postnatal stages. At E14, neurons generated a single TTX-sensitive, voltage-gated Na+ AP when depolarized; a higher discharge rate appeared at older stages. AP amplitude, half-width, and rise and fall times all change during development. Responses to current injection revealed a number of voltage-gated conductances in embryonic rNST, including a hyperpolarization-activated inward current and a low-threshold Ca2+ current that initiated Ca2+ spikes. A hyperpolarization-activated, transient outward potassium current was also present in the developing neurons. Although the properties of these channels change during development, they are present before synapses form and therefore, can contribute to initial establishment of neural circuits, as well as to the changing electrophysiological properties in developing rNST neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3