Enhanced Excitability Compensates for High-Pressure-Induced Depression of Cortical Inputs to the Hippocampus

Author:

Talpalar Adolfo E.1,Grossman Yoram1

Affiliation:

1. Department of Physiology, Faculty of Health Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract

High pressure (>1.0 MPa) induces the high-pressure neurological syndrome (HPNS) characterized by increased excitability of the CNS and cognitive impairments involving memory disorders. The perforant-path transfer of cortical information to the hippocampal formation is important for memory acquisition. High pressure may alter information transfer in this connection. We used rat corticohippocampal slices for studying the effect of pressure on the transfer function between synaptic inputs from the medial perforant path (MPP) and spike generation by granule cells (GC) of the dentate gyrus. High pressure (10.1 MPa) reduced single MPP field excitatory postsynaptic potential (fEPSP) amplitude and slope by nearly 50%. Field antidromic action potentials (AAPs) elicited by stimulation of GC axons, and population spike (PS) generation by the pressure-depressed MPP fEPSP were not significantly altered at hyperbaric conditions. Nevertheless the relationship PS/fEPSP increased at high pressure, indicating dendritic hyperexcitability in the GC. PSs elicited by paired-pulse MPP fEPSPs at 10- to 200-ms interstimulus intervals and PS generated by trains of five fEPSPs at 25 Hz were also not affected in spite of severe pressure-induced synaptic depression. Similarly, trains of AAPs at 25–50 Hz were not significantly changed. Trains of fEPSPs at higher frequency (50 Hz), however, induced additional spikes at high pressure, indicating pressure disruption of the regular low-pass filter properties of the DG. Such effect was closely mimicked by partial blockade of GABAA inhibition. High pressure depresses synaptic activity while increases excitability in the neuronal dendrites but not in the axons. This mechanism, allowing neuronal communication at low input signals, may partially cope with pressure effects at the low frequency range (<25 Hz) but losses reliability at higher frequencies (>50 Hz).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3