Very small faces are easily discriminated under long and short exposure times

Author:

Gur Moshe1

Affiliation:

1. Department of Biomedical Engineering, Technion, Haifa, Israel

Abstract

Acuity measures related to overall face size that can be perceived have not been studied quantitatively. Consequently, experimenters use a wide range of sizes (usually large) without always providing a rationale for their choices. I studied thresholds for face discrimination by presenting both long (500 ms)- and short (17, 33, 50 ms)-duration stimuli. Face width threshold for the long presentation was ~0.2°, and thresholds for the flashed stimuli ranged from ~0.3° for the 17-ms flash to ~0.23° for the 33- and 50-ms flashes. Such thresholds indicate that face stimuli used in physiological or psychophysical experiments are often too large to tap human fine spatial capabilities, and thus interpretations of such experiments should take into account face discrimination acuity. The 0.2° threshold found in this study is incompatible with the prevalent view that faces are represented by a population of specialized “face cells” because those cells do not respond to <1° stimuli and are optimally tuned to >4° faces. Also, the ability to discriminate small, high-spatial frequency flashed face stimuli is inconsistent with models suggesting that fixational drift transforms retinal spatial patterns into a temporal code. It seems therefore that the small image motions occurring during fixation do not disrupt our perception, because all relevant processing is over with before those motions can have significant effects. NEW & NOTEWORTHY Although face perception is central to human behavior, the minimally perceived face size is not known. This study shows that humans can discriminate very small (~0.2°) faces. Furthermore, even when flashed for tens of milliseconds, ~0.25° faces can be discriminated. Such fine acuity should impact modeling of physiological mechanisms of face perception. The ability to discriminate flashed faces where there is almost no eye movement indicates that eye drift is not essential for visibility.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3