Voltage-dependent sodium and calcium currents of rat myenteric neurons in cell culture

Author:

Franklin J. L.1,Willard A. L.1

Affiliation:

1. Department of Physiology, University of North Carolina, Chapel Hill27599-7545.

Abstract

1. Inward currents of myenteric neurons that had been grown in cell cultures prepared from the small intestines of neonatal or young adult rats were studied with tight seal whole-cell recordings. The kinetic and pharmacological properties of these neurons were analyzed. 2. All neurons had rapidly inactivating, tetrodotoxin (TTX)-sensitive Na+ currents that could be evoked by steps to potentials more positive than -50 mV. Holding potentials more negative than -65 mV were necessary to remove steady-state inactivation. No TTX-insensitive Na+ currents were observed, thus the ability of subsets of myenteric neurons to fire action potentials in TTX must depend upon their density of Ca2+ channels. 3. Ca2+ and Ba2+ currents were studied in neurons perfused internally with CsCl to block K+ currents and bathed with solutions containing TTX and antagonists of K+ channels. Currents were significantly larger when Ba2+ replaced Ca2+ as the charge carrier. Cd2+ and Gd3+ blocked Ca2+ and Ba2+ currents rapidly and reversibly. High-voltage-activated (HVA) Ca2+ and Ba2+ currents were observed in all neurons. Too few neurons possessed detectable low-voltage-activated Ca2+ currents to permit detailed study. 4. HVA Ca2+ and Ba2+ currents evoked from holding potentials more negative than -50 mV could be divided into two kinetically distinguishable components with very different rates of inactivation. A "decaying" component inactivated relatively rapidly with a t1/2 of 25-75 ms. A "sustained" component inactivated quite slowly with a t1/2 of 1-5 s. At more positive holding potentials, only the sustained component was observed. Although the two kinetically distinguishable components had different current-voltage relationships, they had indistinguishable rates of deactivation: a single time constant was sufficient to fit the decay of tail currents. The relative amplitudes of the two components varied considerably among different neurons. 5. Ca2+ and Ba2+ currents could be divided into two pharmacologically distinct components on the basis of sensitivity to omega-conotoxin GVIA (I omega CgTX) and to dihydropyridine antagonists (IDHP). At holding potentials more positive than -70 mV, a combination of omega CgTX and DHPs completely blocked Ca2+ and Ba2+ currents in most neurons. At holding potentials more negative than -50 mV, I omega CgTX and IDHP each contained decaying and sustained components. I omega CgTX activated more slowly than did IDHP. The DHP agonist Bay K8644 increased the amplitude of IDHP and slowed its rate of deactivation. 6. The results suggest that myenteric neurons may have as few as two subtypes of HVA Ca2+ channels; omega CgTX-sensitive ones and DHP-sensitive ones.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Segmental differences in the non-neuronal cholinergic system in rat caecum;Pflügers Archiv - European Journal of Physiology;2018-01-03

2. Slow Wave Activity and Modulations in Mouse Jejunum Myenteric Plexus In Situ;Journal of Neurogastroenterology and Motility;2017-01-30

3. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon;Cell and Tissue Research;2013-06-27

4. Patch clamp recording from enteric neurons in situ;Nature Protocols;2010-12-09

5. Stimulation of voltage-dependent Ca2+channels by NO at rat myenteric neurons;American Journal of Physiology-Gastrointestinal and Liver Physiology;2007-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3