Cerebellar ataxia and muscle spindle sensitivity

Author:

Gorassini M.1,Prochazka A.1,Taylor J. L.1

Affiliation:

1. Department of Physiology, University of Alberta, Edmonton,Canada.

Abstract

1. The cerebellum has long been known to participate in movement control. One of the enduring theories of cerebellar function is that it "tunes" and coordinates sensorimotor traffic in other parts of the CNS. In particular, it has been implicated in the control of the sensitivity of muscle spindle stretch receptors through the fusimotor system. 2. The stretch sensitivity of spindle primary endings can be varied approximately over a 10-fold range by fusimotor efferent action. For many years it has been believed that cerebellar dysfunction is associated with reduced drive to the fusimotor system and that this in turn causes hypotonia by reducing the reflex excitation of alpha-motoneurons by spindle afferents. 3. The data on which this hypothesis is based were obtained in anesthetized or decerebrate animals. Little direct information is available on animals or humans performing voluntary movements and exhibiting ataxia or other cerebellar symptoms. 4. We tested the hypothesis by recording from nine muscle spindle afferents in behaving cats before and during reversible inactivation of cerebellar interpositus and dentate nuclei. In normal cats fusimotor action varies with motor task, greatly altering spindle stretch sensitivity. We investigated whether this same range of task-related sensitivity manifested itself during ataxia. 5. We found that the full range of spindle sensitivity was still present during ataxia. We therefore conclude that the cerebellar nuclei studied are not primarily responsible for fusimotor control, nor is the ataxia primarily caused by disordered proprioceptive sensitivity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3