A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal

Author:

Bielefeldt K.1,Jackson M. B.1

Affiliation:

1. University of Wisconsin, Madison, Department of Physiology53706.

Abstract

1. The contribution of a calcium-activated potassium channel to action-potential failure was studied in nerve terminals of the rat posterior pituitary. 2. Depolarizing current injections under current clamp were faithfully followed by action potentials for stimulation frequencies of < or = 12 Hz. Further increases in frequency resulted in action-potential failure within a few hundred milliseconds. The fraction of failures increased with stimulation frequency. This decrease in excitability was concomitant with a hyperpolarization from -57.3 +/- 1.4 to -61.3 +/- 1.4 (SE) mV. 3. The decrease in excitability was dependent on calcium influx through voltage-dependent calcium channels, because action-potential failures did not occur at frequencies < or = 30 Hz in the presence of cadmium. The dihydropyridine agonist BayK 8644 increased the fraction of failed action potentials. 4. Depolarizations from -80 to 10 mV for 3 s evoked macroscopic potassium currents with a rapidly activated, transient component and a slowly developing, noninactivating component. The late outward current was dependent on calcium influx, because it was reduced by cadmium and enhanced by BayK 8644. 5. Tetraethylammonium and 4-aminopyridine effectively blocked potassium outward currents but failed to distinguish this calcium-dependent potassium channel from the other two potassium channels in this preparation. Charybdotoxin and apamin did not affect potassium currents in this preparation. 6. In excised inside-out patches, the calcium-dependent potassium channel had a slope conductance of 193 pS. The open probability changed e-fold per 14.8 mV change in membrane potential with a calcium concentration at the cytoplasmic membrane face ([Ca]i) of 100 nM. 7. The channel was highly sensitive to [Ca]i. Depolarizations to 100 mV at 10 nM [Ca]i activated the channel half-maximally. When [Ca]i was raised to 250 nM, the voltage for half-maximal activation shifted to -16 mV. Calcium also decreased the steepness of the voltage activation curve. 8. At a constant membrane potential, pressure ejection of calcium to the cytosolic face of an excised patch activated the channel with a delay of 82 ms. This slow activation in excised patches was consistent with the slow activation of the delayed component of the macroscopic current. 9. At constant calcium concentration, the time course of activation exhibited a strong voltage dependence. Most of the channels did not inactivate during depolarizations lasting < or = 300 ms. 10. The channel exhibited complex gating, with at least two distinct open and closed states.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3