Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex

Author:

Alzheimer C.1,Schwindt P. C.1,Crill W. E.1

Affiliation:

1. Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle 98195.

Abstract

1. Whole-cell recordings were performed on acutely isolated pyramidal neurons from rat sensorimotor cortex 2 to 21 days postnatal to study the expression of a tetrodotoxin (TTX) sensitive, voltage dependent, persistent Na+ current (INaP) during different stages of postnatal development. 2. INaP was activated positive to about -60 mV and attained its peak amplitude between -40 and -35 mV. Activation of INaP did not require preceding activation of the transient Na+ current. 3. Peak INaP amplitudes showed a three-fold increase over the first three postnatal weeks, starting from 60.7 +/- 7.5 (SE) pA (n = 6) at postnatal day (P) 2-P5 and reaching 189.1 +/- 20.4 pA (n = 13) at P17–P21. 4. Measurements of peak INaP density, which took concomitant cell growth into account, revealed that a considerable current density already existed in very young neurons (P2–P5: 4.3 +/- 1.0 microA/cm2, n = 6) when compared with INaP density in early adult neurons (P17 - P21: 8.9 +/- 0.8 microA/cm2, n = 5). 5. Our data provide the first direct evidence for the presence of a significant INaP density during early postnatal development of neocortical neurons indicating that this current should play a role in the control of intrinsic excitability at this age.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3