Wipe and flexion reflexes of the frog. I. Kinematics and EMG patterns

Author:

Schotland J. L.1,Rymer W. Z.1

Affiliation:

1. Department of Physiology, Northwestern University Medical School,Lakeside, Chicago, Illinois.

Abstract

1. We evaluated the hypothesis that the neural control of complex motor behaviors is simplified by building movement sequences from a series of simple neural "building blocks." In particular, we compared two reflex behaviors of the frog, flexion withdrawal and the hindlimb-hindlimb wipe reflex, to determine whether a single neural circuit that coordinates flexion withdrawal is incorporated as the first element in a sequence of neural circuits comprising the wipe. The neural organization of these two reflexes was compared using a quantitative analysis of movement kinematics and muscle activity patterns [electromyograms (EMGs)]. 2. The three-dimensional coordinates of the position of the foot over time and the angular excursion of hip, knee, and ankle joints were recorded using a WATSMART infrared emitter-detector system. These data were quantified using principal-components analysis to provide a measure of the shape (eigenvalues) and orientation (eigen-vector coefficients) of the movement trajectories. The latencies and magnitudes of EMGs of seven muscles acting at the hip, knee, and ankle were analyzed over the interval from EMG onset to movement onset, and EMG magnitudes during the initial flexion of the limb. These variables were compared during flexion withdrawal and the initial flexion movement of the limb during the hindlimb-hindlimb wipe reflex (before the onset of the frequently rhythmic portion when the stimulus is removed) when the two reflexes were elicited from comparable stimulus locations. 3. In both the flexion reflex and the initial movement segment of the wipe reflex, the foot moves along a relatively straight line. However, the foot is directed to a more rostral and lateral position during flexion than during wipe. All three joints flex during flexion withdrawal, whereas during the wipe, the knee and ankle joints flex but the angular excursion of the hip joint may vary. The different orientations of the movement trajectories are associated with EMG patterns that differ in both timing and magnitude between the two reflexes. 4. The differences in the kinematics and EMG patterns of the two reflexes during unrestrained movements make it unlikely that the neural circuit that coordinates flexion withdrawal is incorporated as the first element in the sequence of neural circuits underlying the wipe reflex. 5. Unlike the wipe reflex, during flexion withdrawal there is no apparent constraint on the accuracy of placement at the end of the movement, yet the animals nevertheless achieved consistent final positions of both the foot and of each joint. The implications of these findings with respect to the controlled variables are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3