Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling

Author:

McClellan A. D.1,Jang W.1

Affiliation:

1. Division of Biological Sciences, University of Missouri, Columbia 65211.

Abstract

1. Mechanoreceptors in the lamprey spinal cord have inputs to the central pattern generator (CPG) for locomotion. In the present study, imposed sinusoidal and pulsed movements were applied to the end of the in vitro lamprey spinal cord to excite the mechanoreceptors so that the relationship between entrainment and resetting of the locomotor rhythm could be examined. 2. The range over which the locomotor rhythm could be entrained by sinusoidal movements was asymmetric and occurred mostly at movement cycle times below the resting cycle time. During entrainment at the shortest cycle times, the movement phases were relatively small. 3. The phase response curves (PRCs) displayed the greatest shortening of cycle times (phase advance) for movement pulses applied during the first half of the locomotor cycle, whereas movement pulses applied during the second half of the cycle were largely ineffective. The amplitude of phase shifts in the PRC correlated with the ranges of cycle times over which entrainment occurred. 4. During resetting from movement pulses applied early in the cycle, the burst and interburst parts of the cycle shortened by about the same percentage. In addition, resetting effects occurred simultaneously along the spinal cord, suggesting a rapid distribution of timing information. 5. A computer model of the CPGs, consisting of left and right oscillators and inputs from mechanosensory elements, produced entrainment ranges that were symmetric around the resting cycle time. The PRCs from the model showed phase advance for movement pulses applied during the first half of the cycle and phase delay for pulses applied during the second half of the cycle. 6. Because of the asymmetric experimental PRCs for the lamprey spinal cord, gating was incorporated into the cooffter model such that oscillators on one side of the model gated inputs from mechanosensory elements on the same side. With gating, the model produced entrainment ranges that were asymmetric and confined to cycle times below the resting cycle time. The PRCs still showed phase advance for pulses applied at the beginning of the cycle, and the amount of phase delay produced during the second half of the cycle was substantially reduced compared with the simulations without gating.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3