Relative contribution of rod and cone inputs to bipolar cells and ganglion cells in the tiger salamander retina

Author:

Hensley S. H.1,Yang X. L.1,Wu S. M.1

Affiliation:

1. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas77030.

Abstract

1. The relative contribution of rod and cone inputs to bipolar and ganglion cells were studied by comparing the response-irradiance relations, spectral sensitivities, and response waveforms of these neurons recorded from the isolated, flat-mounted tiger salamander retina under dark-adapted conditions. 2. Bipolar cells could be differentiated both on the basis of the polarity of the light response and on their relative rod/cone input. Thus some depolarizing bipolar cells appeared more strongly influenced by rod input (DBCR), whereas others were more influenced by cone input (DBCC). Similarly, hyperpolarizing bipolar cells could be divided into those that received rod-dominant input (HBCR) or cone-dominant input (HBCC). 3. The light onset response of sustained-ON ganglion cells reflected both rod-dominant input from DBCRs and cone-dominant input from DBCCs. 4. OFF ganglion cells displayed both a rod-dominant sustained light offset response and a cone-dominant transient light offset response, suggesting input from both HBCRs and HBCCs. 5. In ON-OFF ganglion cells, the light onset response was strongly rod dominated and was presumably mediated by DBCRs, whereas the light offset response displayed both rod and cone influence, suggesting input from HBCRs and HBCCs. The contribution of cones to the light onset response of ON-OFF ganglion cells was only observed in the presence of a rod-adapting background light. 6. A suppression of the light offset responses of OFF and ON-OFF ganglion cells was observed, which was dependent both on the wavelength and irradiance of the light stimulus. 7. These results indicate that the photoreceptor inputs to bipolar cells in the tiger salamander retina are segregated such that they form separate rod-dominant and cone-dominant pathways. Thus the response properties of the different types of ganglion cells are influenced not only by the excitatory and inhibitory inputs they receive from the bipolar and amacrine cells but also whether these inputs are provided through rod-dominant or cone-dominant pathways. The functional implications of these findings are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3