Speed and direction selectivity of macaque middle temporal neurons

Author:

Lagae L.1,Raiguel S.1,Orban G. A.1

Affiliation:

1. Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit te Leuven, Belgium.

Abstract

1. We tested quantitatively the responses of 147 middle temporal (MT) cells to light and dark bars moving at different speeds ranging over a 1,000-fold range (0.5–512 deg/s). 2. We derived the following quantities from the speed-response (SR) curves obtained for opposite directions of motion. Speed selectivity was characterized by the maximum response, optimum speed, upper cutoff speed, response to slow movement, and tuning width. Direction selectivity was characterized by the direction index (DI) averaged over speeds yielding significant responses (MDI) and by the direction index at optimal speed (PDI). 3. There was an excellent correlation between speed characteristics for light and dark bars. These correlations were stronger than the correlations between direction indexes. The strongest correlations were obtained for maximum response and upper cutoff. 4. SR curves were classified into three groups: low pass (25%), tuned (43%), and broadband (28%), leaving 4% unclassified. 5. In the majority (75%) of MT cells, there was an agreement between the typology of speed selectivity for light and dark bars. Cells were classified as tuned (33%), low pass (22%), broadband (19%), and mixed (22%), leaving 4% unclassified. In addition to differences in speed characteristics, these groups also differed in response level, direction selectivity, and distribution of preferred directions. 6. For tuned cells, there was a very tight correlation of most speed characteristics for light and dark bars. 7. Direction selectivity depended on stimulus speed in most neurons, yielding a tuned average speed-DI curve. 8. Speed characteristics, proportions of speed selectivity types, and direction selectivity indexes showed little dependence on laminar position. 9. Speed characteristics and direction selectivity indexes were not dependent on eccentricity. Proportion of speed selectivity types however, changed dramatically with eccentricity: low-pass cells dominated foveally, tuned cells parafoveally, and broadband cells peripherally. 10. There were also small eccentricity effects on the range of optimal speeds shown by tuned cells and on the speed at which direction selectivity decreases in the slow speed range.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3