Potassium channel family in giant motor axons of Aglantha digitale

Author:

Meech R. W.1,Mackie G. O.1

Affiliation:

1. Department of Physiology, Medical School, Bristol, United Kingdom.

Abstract

1. The simplicity of the jellyfish nervous system makes it an ideal preparation to assess the contributions of different ion channels to behavior. In the giant motor axons of the jellyfish Aglantha digitale, low-threshold spikes elicit slow swimming, whereas escape swimming depends on a higher-threshold, overshooting sodium-dependent action potential. At least three kinetically distinct transient potassium channels (fast, intermediate, and slow) are concerned with spike management in this preparation. 2. In situ recording with patch-clamp micropipettes from clusters of potassium channels provides a means of studying their properties in isolation. The three classes of ion channel were identified in ensemble current averages by their kinetics, their response to a conditioning prepulse and their voltage dependence. All three were highly selective for potassium, and the reversal potential of their unitary currents depended on the level of potassium used to fill the patch pipette. 3. A single potassium permeability coefficient (PK) calculated from the Goldman, Hodgkin, Katz “constant field” equation was used to fit unitary current data from all three channels in concentrations of external potassium < or = 500 mM. 4. Data from ensemble tail currents in seawater indicated that the sodium permeability coefficient (PNa) of channels with either intermediate or slow kinetics was < or = 0.015 PK; preliminary data from channels with fast kinetics suggested that they too had a PNa/PK selectivity of approximately 0.01. 5. We propose that spike management in the giant motor axons of Aglantha depends on three members of a family of potassium-selective ion channels that seem likely to be structurally related.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3