Synaptic integration in an excitable dendritic tree

Author:

Mel B. W.1

Affiliation:

1. Computation and Neural Systems Program, California Institute ofTechnology, Pasadena 91125.

Abstract

1. Compartmental modeling experiments were carried out in an anatomically characterized neocortical pyramidal cell to study the integrative behavior of a complex dendritic tree containing active membrane mechanisms. Building on a previously presented hypothesis, this work provides further support for a novel principle of dendritic information processing that could underlie a capacity for nonlinear pattern discrimination and/or sensory processing within the dendritic trees of individual nerve cells. 2. It was previously demonstrated that when excitatory synaptic input to a pyramidal cell is dominated by voltage-dependent N-methyl-D-aspartate (NMDA)-type channels, the cell responds more strongly when synaptic drive is concentrated within several dendritic regions than when it is delivered diffusely across the dendritic arbor. This effect, called dendritic "cluster sensitivity," persisted under wide-ranging parameter variations and directly implicated the spatial ordering of afferent synaptic connections onto the dendritic tree as an important determinant of neuronal response selectivity. 3. In this work, the sensitivity of neocortical dendrites to spatially clustered synaptic drive has been further studied with fast sodium and slow calcium spiking mechanisms present in the dendritic membrane. Several spatial distributions of the dendritic spiking mechanisms were tested with and without NMDA synapses. Results of numerous simulations reveal that dendritic cluster sensitivity is a highly robust phenomenon in dendrites containing a sufficiency of excitatory membrane mechanisms and is only weakly dependent on their detailed spatial distribution, peak conductances, or kinetics. Factors that either work against or make irrelevant the dendritic cluster sensitivity effect include 1) very high-resistance spine necks, 2) very large synaptic conductances, 3) very high baseline levels of synaptic activity, and 4) large fluctuations in level of synaptic activity on short time scales. 4. The functional significance of dendritic cluster sensitivity has been previously discussed in the context of associative learning and memory. Here it is demonstrated that the dendritic tree of a cluster-sensitive neuron implements an approximative spatial correlation, or sum of products operation, such as that which could underlie nonlinear disparity tuning in binocular visual neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 321 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3