Smooth eye movements elicited by microstimulation in the primate frontal eye field

Author:

Gottlieb J. P.1,Bruce C. J.1,MacAvoy M. G.1

Affiliation:

1. Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510.

Abstract

1. We electrically stimulated the macaque monkey's frontal eye field (FEF) region to localize and to analyze the smooth pursuit eye movement representation. Rhesus monkeys were trained to fixate stationary spots of light, and trains of stimulation (usually 250–500 ms at 10–100 microA) were applied while the fixation targets remained lit and stationary. This paradigm was used in a total of 485 electrode penetrations through the arcuate sulcus region of six hemispheres in three adult monkeys. Smooth eye movements (SEMs), clearly distinct from saccades, were elicited at 86 sites in 53 of these penetrations. These SEMs had an average peak velocity of 11 degrees/s and an average latency of 39 ms. 2. The initial acceleration and peak velocity of elicited SEMs increased with stimulation intensity at any given site. On the other hand, SEM direction was characteristic of a given stimulation site and did not vary with stimulation intensity. These findings indicate that SEM amplitude is coded by the intensity of neural activity, and SEM direction is coded by the location of this activity within the cortex (“rate” vs. “place” codes). 3. SEMs elicited in the presence of a stationary fixation target (closed-loop conditions) typically reached a plateau velocity early in the stimulation and maintained that velocity throughout most of the stimulation train. However, when retinal slip was eliminated by artificially stabilizing the fixation target on the fovea (open-loop conditions), the electrical stimulation caused the eye to accelerate for longer periods and to attain higher velocities than in the closed-loop condition. Eye velocities obtained at the same site in open- and closed-loop conditions diverged from one another approximately 100 ms after SEM onset, consistent with the visual latency of the pursuit system. These findings suggest that the FEF primarily conveys an eye acceleration signal, rather than an eye velocity goal, to the pursuit system, and that this signal can be affected by visual retinal errors before effecting the smooth eye movements. 4. SEMs were elicited from a small portion of the arcuate fundus and neighboring posterior bank lying directly posterior to the principal sulcus. Functionally, this SEM region was surrounded by the saccadic FEF and by somatic premotor cortex. 5. Even though ipsilateral, contralateral, and vertical SEMs were elicited, the distribution of SEM directions was skewed toward ipsilateral movements. This tendency was more pronounced for sites in the arcuate fundus, whereas SEMs elicited from the posterior arcuate bank were often directed contralaterally and vertically.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3